文章信息
文章題目:Ligand-Induced Ubiquitination Unleashes LAG3 Immune Checkpoint Function by Hindering Membrane Sequestration of Signaling Motifs
期刊:Cell
發(fā)表時間:2025年3月17日
主要內(nèi)容:上??萍即髮W(xué)王皞鵬課題組、中國科學(xué)院分子細(xì)胞科學(xué)卓越創(chuàng)新中心許琛琦課題組、美國匹茲堡大學(xué)醫(yī)學(xué)院Dario Vignali課題組、北京大學(xué)腫瘤醫(yī)院孔燕課題組與百濟(jì)神州沈志榮團(tuán)隊合作,在Cell雜志在線發(fā)表題為Ligand-Induced Ubiquitination Unleashes LAG3 Immune Checkpoint Function by Hindering Membrane Sequestration of Signaling Motifs的研究論文。該研究首次揭示LAG3受體激活的分子開關(guān)機(jī)制,并開發(fā)了預(yù)測療效的新型生物標(biāo)志物,為靶向免疫檢查點(diǎn)的精準(zhǔn)治療提供了新策略。
原文鏈接:https://www.cell.com/cell/fulltext/S0092-8674(25)00199-0
使用TransGen產(chǎn)品:
Trans5α Chemically Competent Cell(CD201)
Transetta(DE3) Chemically Competent Cell(CD801)
6×Protein Loading Buffer(DL101)
研究背景
免疫檢查點(diǎn)是T細(xì)胞表面抑制性受體,腫瘤通過激活此類受體抑制T細(xì)胞抗腫瘤功能以實(shí)現(xiàn)免疫逃逸,而免疫檢查點(diǎn)抑制劑(如2018年諾貝爾生理醫(yī)學(xué)獎獲獎成果PD-1阻斷抗體)可解除抑制并重啟抗腫瘤免疫應(yīng)答,其中PD-1抗體因顯著療效被譽(yù)為“藥王”。隨著LAG3于2023年成為繼PD-1和CTLA-4后第三個獲批的免疫檢查點(diǎn)藥物,該領(lǐng)域邁入新階段。然而,與PD-1治療僅20-30%患者獲益相似,LAG3治療同樣面臨響應(yīng)率有限的瓶頸,如何精準(zhǔn)識別潛在獲益人群并擴(kuò)大治療獲益范圍,已成為當(dāng)前腫瘤免疫研究的重點(diǎn)問題。自1990年發(fā)現(xiàn)LAG3蛋白以來,其配體結(jié)合后如何觸發(fā)LAG3受體激活的分子機(jī)制一直未能闡明。
文章概述
本研究揭示了LAG3受體激活的核心機(jī)制:配體結(jié)合觸發(fā)Cbl家族(c-Cbl/Cbl-b)介導(dǎo)的K498位點(diǎn)非K48鏈多聚泛素化修飾,該修飾通過破壞其近膜堿性殘基富集序列(BRS)與膜磷脂的相互作用,釋放被遮蔽的FSALE信號基序,以"埋藏-釋放"模式啟動免疫抑制功能,并證實(shí)膜結(jié)合型FGL1是功能性配體而非游離態(tài)蛋白?;跈C(jī)制創(chuàng)新,研究建立了LAG3泛素化水平作為靶向藥物效能的分子標(biāo)志物,同時開發(fā)了LAG3+CBL+聯(lián)合生物標(biāo)志物,較傳統(tǒng)的單一LAG3表達(dá)生物標(biāo)志物具有顯著優(yōu)勢,綜上所述,該研究首次闡明LAG3受體激活的關(guān)鍵機(jī)制:配體結(jié)合誘導(dǎo)泛素連接酶Cbl介導(dǎo)的非K48鏈多聚泛素化修飾,該修飾不引發(fā)LAG3降解,而是作為分子開關(guān)通過構(gòu)象變化啟動其免疫抑制功能。更重要的是開發(fā)了可預(yù)測LAG3治療效果的新型生物標(biāo)志物,為腫瘤免疫的精準(zhǔn)治療提供了新策略。
全式金生物產(chǎn)品支撐
優(yōu)質(zhì)的試劑是科學(xué)研究的利器。全式金生物的Trans5a克隆感受態(tài)細(xì)胞 (CD201) 和Transetta(DE3) 表達(dá)感受態(tài)細(xì)胞 (CD801)、蛋白電泳緩沖液 (DL101) 助力本研究。產(chǎn)品自上市以來,深受客戶青睞,多次榮登Cell、Nature、Science等知名期刊,助力科學(xué)研究。
Trans5a Chemically Competent Cell (CD201)
本產(chǎn)品經(jīng)特殊工藝制作,可用于DNA的化學(xué)轉(zhuǎn)化。使用pUC19質(zhì)粒DNA檢測,轉(zhuǎn)化效率高達(dá)108 cfu/μg DNA以上。因其轉(zhuǎn)化效率高,產(chǎn)品性能穩(wěn)定的特點(diǎn)多次榮登Nature、Cell、Cell Metabolism期刊。
產(chǎn)品特點(diǎn):
● 適用于藍(lán)白斑篩選。
● rec A1和end A1的突變有利于克隆DNA的穩(wěn)定和高純度質(zhì)粒DNA的提取。
Transetta(DE3) Chemically Competent Cell (CD801)
本產(chǎn)品采用進(jìn)口菌株,特殊工藝制作,可用于DNA的化學(xué)轉(zhuǎn)化。細(xì)胞具有氯霉素(Camr)抗性。使用pUC19質(zhì)粒DNA檢測,轉(zhuǎn)化效率可達(dá)107 cfu/μg DNA。因其表達(dá)效率高、產(chǎn)品性能穩(wěn)定的特點(diǎn)多次榮登Nature、Cell、Science期刊。
產(chǎn)品特點(diǎn):
● 該菌株是攜帶氯霉素抗性質(zhì)粒BL21的衍生菌,補(bǔ)充大腸桿菌缺乏的6種稀有密碼子(AUA, AGG, AGA,CUA, CCC, GGA)對應(yīng)的tRNA,提高外源基因,尤其是真核基因在原核系統(tǒng)中的表達(dá)水平。
● 表達(dá)效率高、產(chǎn)品性能穩(wěn)定。
6×Protein Loading Buffer(DL101)
本產(chǎn)品是蛋白質(zhì)樣品進(jìn)行SDS聚丙烯酰胺凝膠電泳 (SDS-PAGE) 用 Loading Buffer。將其加入蛋白樣品中,使其工作濃度為1×,即可上樣電泳。
產(chǎn)品特點(diǎn):
● 抑制降解,蛋白變性后更穩(wěn)定。
● 采用新型還原劑,可高效還原二硫鍵。
● 加樣不漂樣,避免樣品污染。
全式金生物的產(chǎn)品再度亮相Cell期刊,不僅是對全式金生物產(chǎn)品卓越品質(zhì)與雄厚實(shí)力的有力見證,更是生動展現(xiàn)了全式金生物長期秉持的“品質(zhì)高于一切,精品服務(wù)客戶”核心理念。一直以來,全式金生物憑借對品質(zhì)的執(zhí)著追求和對創(chuàng)新的不懈探索,其產(chǎn)品已成為眾多科研工作者信賴的得力助手。展望未來,我們將持續(xù)推出更多優(yōu)質(zhì)產(chǎn)品,期望攜手更多科研領(lǐng)域的杰出人才,共同攀登科學(xué)高峰,書寫科研創(chuàng)新的輝煌篇章。
使用Trans5a Chemically Competent Cell (CD201)產(chǎn)品發(fā)表的部分文章:
? Jiang Y, Dai A R, Huang Y W, et al. Ligand-induced ubiquitination unleashes LAG3 immune checkpoint function by hindering membrane sequestration of signaling motifs [J]. Cell, 2025.(IF 45.5)
? Ou X M, Ma C Y, Sun D J, et al. SecY translocon chaperones protein folding during membrane protein insertion [J]. Cell, 2025.(IF 45.5)
? Zhao Y, Ping Y Q, Wang M W, et al. Identification, structure and agonist design of an androgen membrane receptor [J]. Cell, 2025.(IF 45.5)
? Wen X, Shang P, Chen H D, et al. Evolutionary study and structural basis of proton sensing by Mus GPR4 and Xenopus GPR4 [J]. Cell, 2025.(IF 45.5)
? Hu Q L, Liu H H, He Y J, et al. Regulatory mechanisms of strigolactone perception in rice [J]. Cell, 2024.(IF 45.5)
? Shang P, Rong N, Jiang J J, et al. Structural and signaling mechanisms of TAAR1 enabled preferential agonist design[J]. Cell, 2023.(IF 45.5)
? Jiang L, Xie X, Su N, et al. Large Stokes shift fluorescent RNAs for dual-emission fluorescence and bioluminescence imaging in live cells[J]. Nature Methods, 2023.(IF 36.1)
? Li X, Zhang Y, Xu L, et al. Ultrasensitive sensors reveal the spatiotemporal landscape of lactate metabolism in physiology and disease[J]. Cell Metabolism, 2023.(IF 27.7)
? Han W, Gao B Q, Zhu J, et al. Design and application of the transformer base editor in mammalian cells and mice[J]. Nature Protocols, 2023.(IF 13.1)
? Liu R, Yao J, Zhou S, et al. Spatiotemporal control of RNA metabolism and CRISPR–Cas functions using engineered photoswitchable RNA-binding proteins[J]. Nature Protocols, 2023.(IF 13.1)
? Zhong S, Ding W, Sun L, et al. Decoding the development of the human hippocampus[J]. Nature, 2020.(IF 50.5)
使用Transetta(DE3) Chemically Competent Cell (CD801)產(chǎn)品發(fā)表的部分文章:
? Jiang Y, Dai A R, Huang Y W, et al. Ligand-induced ubiquitination unleashes LAG3 immune checkpoint function by hindering membrane sequestration of signaling motifs [J]. Cell, 2025.(IF 45.5)
? Zeng D S, Lv J Q, et al. The Arabidopsis blue-light photoreceptor CRY2 is active in darkness to inhibit root growth [J]. Cell, 2024.(IF 45.5)
? Wang C, Wang J, Lu J, et al. A natural gene drive system confers reproductive isolation in rice[J]. Cell, 2023.(IF 45.5)
? Chen J, Yu R, Li N, et al. Amyloplast sedimentation repolarizes LAZYs to achieve gravity sensing in plants[J]. Cell, 2023.(IF 45.5)
? Qi Y, Ding L, Zhang S, et al. A plant immune protein enables broad antitumor response by rescuing microRNA deficiency[J]. Cell, 2022.(IF 45.5)
? Wu M, Xu G, Han C, et al. lncRNA SLERT controls phase separation of FC/DFCs to facilitate Pol I transcription[J]. Science, 2021.(IF 44.7)
使用6×Protein Loading Buffer(DL101)產(chǎn)品發(fā)表的部分文章:
? Jiang Y, Dai A R, Huang Y W, et al. Ligand-induced ubiquitination unleashes LAG3 immune checkpoint function by hindering membrane sequestration of signaling motifs [J]. Cell, 2025.(IF 45.5)
? Zang X, He X Y, Xiao C M, et al. Circular RNA-encoded oncogenic PIAS1 variant blocks immunogenic ferroptosis by modulating the balance between SUMOylation and phosphorylation of STAT1[J]. Molecular Cancer, 2024. (IF 27.7)
? Jin X, Xia T, Luo S, et al. Exosomal lipid PI4P regulates small extracellular vesicle secretion by modulating intraluminal vesicle formation[J]. Journal of Extracellular Vesicles, 2023. (IF 15.5)
? Zhai X, Kong N, Zhang Y, et al. N protein of PEDV plays chess game with host proteins by selective autophagy[J]. Autophagy, 2023. (IF 14.6)
? Gong H, Wang T, Wu M, et al. Maternal effects drive intestinal development beginning in the embryonic period on the basis of maternal immune and microbial transfer in chickens[J]. Microbiome, 2023. (IF 13.8)
? Zhang Q, Yang X, Wu J, et al. Reprogramming of palmitic acid induced by dephosphorylation of ACOX1 promotes β-catenin palmitoylation to drive colorectal cancer progression[J]. Cell discovery, 2023. (IF 13)
? Yang Q, Tan S, Wang H L, et al. Spliceosomal protein U2B ″delays leaf senescence by enhancing splicing variant JAZ9β expression to attenuate jasmonate signaling in Arabidopsis[J]. New Phytologist, 2023, (IF 8.3)
? Xu J, Zhu J, Liu J, et al. SIZ1 negatively regulates aluminum resistance by mediating the STOP1–ALMT1 pathway in Arabidopsis[J]. Journal of Integrative Plant Biology, 2021, (IF 9.3)
? Cheng Y, Lun M, Liu Y, et al. CRISPR/Cas9-mediated chicken TBK1 gene knockout and its essential role in STING-mediated IFN-β induction in chicken cells[J]. Frontiers in Immunology, 2019. (IF 5.51)